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Abstract
We present theoretical calculations of phonon dispersion in silicon nanocrystals using an
approach based on the adiabatic bond charge model. To deal with the boundary conditions, two
cases are considered: the surface atoms are either free to move or rigidly fixed. In the former
case, surface modes appear at low frequencies and, in the latter case, nodes and antinodes
appear near a frequency of 11 THz. By projecting the nanocrystal modes on the basis of bulk
modes, one can show the increasing correlation between the nanocrystal modes and the bulk
modes when increasing the dot size. Finally, the frequency shift of Raman spectra calculated as
a function of the dot size is found to be in good agreement with sets of experimental data.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Due to their compatibility with CMOS (complementary metal–
oxide–semiconductor) technology, silicon nanocrystals are
likely to become a key element of integrated nanodevices
as single-electron transistors [7] or flash memories [11, 41].
With this aim in mind, to fully assess the potentialities
of electronic devices based on semiconductor quantum dots
it is important to understand precisely the mechanisms of
electron–phonon interaction in semiconductor nanocrystals
and their consequences for the electron dynamics. According
to several authors [1, 2, 25, 45], the discrete nature of
electron levels in quantum dots is expected to give rise to
the phenomenon called phonon bottleneck: an electron on an
excited level cannot relax to the fundamental one by inelastic
phonon scattering unless the energy level separation is exactly
equal to the phonon energy, which is likely to yield slow
relaxation effects. However, more detailed analyses have
predicted that the phonon bottleneck should weaken or even
disappear because of multiphonon effects [22] and collisional
broadening [23, 24]. Studies of the consequences of collisional
broadening for electron relaxation in semiconductor quantum
dots have been reported for GaAs quantum dots using bulk
phonon energies [29, 39]. Nevertheless, as for electrons, the

strong confinement in nanocrystals modifies the phonon states
and consideration of the correct phonon dispersion is certainly
important to accurately describe the electron–phonon coupling.

In section 2, we present the main features of the simulation
method based on Weber’s adiabatic bond charge model
(ABCM) [47], first applied here to bulk silicon and then
to silicon nanocrystals by introducing an effective Madelung
constant. In section 3, the results obtained for silicon
nanocrystals are reported and discussed as a function of
nanocrystal radius by comparison with bulk properties. A
comparison with experimental data is also presented.

2. The model

In the harmonic approximation the displacements �u are
assumed to be small compared to the interatomic distance. The
motion equation is thus written as [3, 4, 9, 10, 31, 38]

Mω2 �u = D�u (1)

where M is the mass of the silicon atom, ω the vibrational
frequency and D the dynamical matrix.

The problem is now to build the dynamical matrix, that is
to establish an appropriate expression for the force constant
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Figure 1. Unit cell in the BCM and the ABCM.

elements. Since it expresses the interactions between the
atoms of the crystal, this expression should depend on the
model used. We have chosen to use Weber’s adiabatic bond
charge model (ABCM) [47] which has been shown to give
very good results for bulk diamond and zinc-blende-type
crystals [48]. Due to its efficiency, the ABCM has been
successfully used to calculate the phonon dispersion for III–
V crystals [37], for II–VI materials [35], as well as nitride
compounds GaN, AlN, BN [44], for GaAs [42] and InP [43]
surfaces and more recently for various silicon nanostructures
including rectangular silicon nanowires [18] and lattices of
nanocrystals [19, 20].

Earlier models, such as Cochran’s shell model
[4, 8–10, 38], have already provided good agreement with ex-
periment. Based on an idea of Dick and Overhauser [12],
the shell model proposes to split the atoms in two parts: a
shell of valence electrons surrounding a core, assimilated to
a positive ion. Phillips [34] pointed out the lack of physical
meaning of the shell model: due to the nature of the covalent
bond, electrons should be shared between the two neighbour-
ing atoms. He proposed to model the shared electrons by a
negative point charge located on the bonds: the bond charges.
This idea was used later by Martin when creating the bond
charge model (BCM) [32], where the bond charges are rigidly
located midway from the neighbouring ions; the unit cell for
bulk diamond-type semiconductors contains two ions, denoted
0 and 1, and four bond charges, denoted here by A, B, C and
D (as indicated in figure 1). The dispersion relation for silicon
was well reproduced, except for the transverse acoustic (TA)
branch flattening at high wavevector. Weber later explained
this flattening by the motion of bond charges [46] and extended
the BCM to the ABCM where the bond charges are allowed to
move.

To complete the ABCM, the number and type of
interactions have to be properly chosen. Weber introduced four
types of interactions, which are schematized in figure 2.

• A central force S1, which can be represented by a spring
between the two ion cores of the unit cell. This central
force is identical to the one used in the force constant
model [3, 4, 9, 10, 31, 38].

• A Keating-type bond-bending interaction, inspired by
Keating’s model [26], between the bond charges.

• Since the total charge of an atom is now separated between
a bond charge and the ion core, we need to use a set of
Coulomb interactions similar to the one used in the BCM,
which relies on the rigid-ion model [3, 4, 9, 10, 27, 31, 38].

Figure 2. Interactions of the ABCM.

The intensity of the Coulomb interactions depends on the
magnitude of the charge borne by the bond charges z. Due
to electrical neutrality of the unit cell, the ions which are
linked to four ions bear the charge −2z.

A new problem arises: the number of degrees of freedom
of the problem is too high, and we now have to deal with
several dynamical matrices. As in the shell model, Weber
used the adiabatic approximation which assumes that the bond
charges have a zero mass and that they follow the ionic motion
adiabatically.

Lastly, to guarantee the equilibrium of the system, the total
energy per atom has to be minimized (this is the equilibrium
condition). We then have to solve the equation given in
the appendix of [47], which involves the Madelung constant
αM [28]. This constant will be discussed further in the next
subsections.

2.1. Application of the model to bulk silicon

We first apply the ABCM to bulk silicon with the same
parameters as those used by Weber [47].

As illustrated in figure 1, the unit cell contains two ions
and four bond charges. Given that the real space is three
dimensional, the dimension of the dynamical matrix is 6 ×
6. The determination of the eigenvalues and eigenvectors is
thus easy, although the operation must be performed for each
wavevector.

The crystal being infinite and the Coulomb interaction
being long-range, the Coulombic part of the dynamical matrix
is a sum over an infinite distribution of point charges. Such
calculations take long to converge; conveniently, the Ewald
transformation [3, 4, 31], which consists in introducing
Gaussian charge distributions, may be used to get much faster
convergence.

The Madelung constant αM is defined by:

αM = −r0

4

1

2

∞∑

i, j

ςiς j

R j − Ri
(2)

where r0 is the equilibrium bond length. If z is the minimal
charge in the lattice (here it is the charge of the bond charge)
and if zi is the charge of the ion or bond charge i , we have
zi = ζi z. We use the value of 4.453 evaluated by Martin for
bulk silicon [32].
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Γ Γ

Figure 3. Calculated phonon dispersion relation for bulk silicon
compared to experiment and its calculated density of states
(arbitrary units).

The calculated phonon dispersion for bulk silicon
compared to experimental data [30] is plotted in figure 3.
The agreement is good and even the TA flattening is properly
reproduced. Figure 3 also shows the calculated density of
states (DOS) which exhibits two main peaks, one near 5 THz
and the other at 14–15 THz. The first peak corresponds to the
flattening of the TA branch at the Brillouin zone edge and the
second one to the optical branches.

2.2. Application of the model to silicon nanocrystals

Owing to the breaking of the translational symmetry, the
notions of wavevector and unit cell are meaningless. The whole
nanocrystal has to be taken into account.

For an NSi-atom nanocrystal, we first determine the
number NBC of bond charges (which is the same as the
number of bounds in the nanocrystal). The dimensions
of the dynamical matrix D are now 3NSi × 3NSi. The
determination of its eigenvalues and eigenvectors can thus
be computationally demanding. Moreover, with a finite
nanocrystal, the Ewald transformation cannot be applied
anymore but finite summations have to be computed.

The equilibrium condition requires the rewriting of the
effective Madelung constant, defined as

αeff
M = −r0

4

1

2

NSi+NBC∑

i, j

ςiς j

R j − Ri
. (3)

As shown in figure 4, αeff
M /NSi tends slowly to αM/2 as the

nanocrystal radius tends to infinity. Except for the change in
this constant, we keep the same parameters for nanocrystals as
those used for bulk silicon.

We now have to deal with the problem of boundary con-
ditions, since in practical applications the silicon nanocrystal
should be embedded in silicon dioxide. As the specific vibra-
tional properties of the atoms situated at the oxide interface are
unknown, two extreme cases are treated: the atoms are consid-
ered either fully free to move (free boundary conditions) or are
kept motionless (clamped boundary conditions). The detailed
analysis of the Si/SiO2 interface is beyond the scope of this pa-
per and other cases of boundary conditions are not considered

Si

Figure 4. Effective Madelung constant per atom αeff
M /NSi in

nanocrystals compared to the actual Madelung constant per atom
αM/2 in bulk material.

here. These two types of boundary conditions have already
been discussed for nanowires [40] and layers [13].

3. Results

The frequency and amplitude of vibrations have been
calculated for silicon nanocrystals of various sizes.

For each nanocrystal, we determine the phonon density
of states (DOS) and compare it to the bulk DOS. When the
nanocrystal radius increases, the two DOS must get closer and
closer [16, 19, 20]. The comparison is possible as the areas
under the curves are normalized to 1.

To complete the analysis, a projection method is applied
to compare the nanocrystal modes with bulk modes. The
continuous ensemble of bulk eigenvectors is restricted to
obtain a discrete basis of vectors with the same number
of elements as the nanocrystal eigenvector. The Born–von
Karman cyclic boundary conditions are used to limit the
number of wavevectors and then the bulk vectors �uB(�q, ωB)

form a basis set on which the nanocrystal modes �uNC(ωNC) are
projected

�uNC(ωNC) =
∑

�q,ωB

C(�q, ωB, ωNC) · �uB(�q, ωB). (4)

If the nanocrystal modes are strongly correlated to the
bulk modes, the projection coefficient C(�q, ωB, ωNC) must be
high and localized around a given frequency [16, 21]. As an
example, a nanocrystal phonon of high frequency is expected
to be related to a bulk optic phonon, which should lead to a high
projection coefficient C . Due to the great number of projection
coefficients, we define some quantities to make the analysis
easier. First, we use the total coherence term defined by

B(�q, ωNC) =
∑

ωB

C(�q, ωB, ωNC) (5)

which expresses the global correlation between a nanocrystal
mode and the bulk modes with wavevector �q .

This quantity can be represented as a surface superim-
posed on the bulk dispersion relation. If the correlation is good,
we should obtain a high total coherence term for ωNC ≈ ωB(�q)

3
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Figure 5. DOS calculated considering free boundary conditions for nanocrystals of radius: (a) 0.6 nm; (b) 2.5 nm; the bulk DOS is
represented by dashed lines.

Figure 6. Total coherence term considering free boundary conditions for a 2.5 nm-radius nanocrystal (lines, bulk dispersion relation):
(a) 3D plot in the [1, 0, 0] direction; (b) contour plot.

and the surface should exhibit a peak. Then, to determine
where the nanocrystal modes are located in the bulk Brillouin
zone, we calculate the Brillouin zone localization as

L(�q) =
∑

ωB,ωNC

C(�q, ωB, ωNC). (6)

3.1. Free-standing boundary conditions

In case of free surface atoms, it can be seen from figure 5 that
the global shape of the nanocrystal DOS tends to the bulk DOS.
However, for two frequency ranges (from 0 to 2 THz and from
13 to 14 THz) the dot modes do not correspond to bulk modes.
In figure 6 the total coherence term B(�q, ωNC) is represented
for wavevectors in the direction [1, 0, 0]. The coherence seems
good, except for the same frequency range where the peaks are
delocalized over the whole range of wavevectors: these modes
are correlated to all the bulk modes at the same time. They are
specific modes of the nanocrystal.

We shall now have a look at the Brillouin zone localization
(figure 7). It appears clearly that the nanocrystal modes are
mostly correlated to the bulk zone centre modes. Thus, the
modes related to the zone edge modes, as the TA modes, are
not visible in the nanocrystal. This explains why the TA peak
at 4–5 THz is not reproduced in figure 5.
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Figure 7. Brillouin zone localization for a 2.5 nm-radius nanocrystal.

After explaining the appearance of some specific modes,
we can consider these results as a first indication that the model
is correct.

While studying GaP nanocrystals, Fu et al [16]
demonstrated the existence of surface-like modes. Such
modes have also been observed by Tütüncü and Srivastava for
GaAs [42] and InP surfaces [43]. As shown in figure 8 for one
of the specific modes (ν = 2 THz), the vibration amplitude
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Figure 8. Amplitude of vibration of atoms in a nanocrystal
(R = 2.5 nm) as a function of their radial position considering free
boundary conditions. The mode frequency is ν = 2 THz.

 

Figure 9. Separation of the nanocrystal between a centre part and an
edge part.

is maximal near the surface of the nanocrystal: surface-like
modes actually appear. We thus divide the 2.5 nm nanocrystal
DOS into two parts (figure 9): one considering only the atoms
in the centre, the other considering the atoms at the edge of
the nanocrystal. The boundary is arbitrarily set at a radius of
two-thirds of the total radius of the nanocrystal.

It appears clearly in figure 10 that the centre DOS (a) is
very close to the bulk DOS whereas the edge DOS (b) displays
mostly the specific modes. We thus conclude that these specific
ranges constitute surface-like modes while the others are bulk-
like modes.

It should be emphasized that, dealing with free boundary
conditions, the relaxation of the surface atoms has not been
taken into account. Tütüncü and Srivastava demonstrated

that some frequencies are slightly shifted and some others
appear [42, 43]. We have chosen to neglect this effect, as
has been done by other authors [16, 49], considering that
the effect of relaxation is negligible. We notice that, due to
negative eigenvalues of the dynamical matrix, a few imaginary
frequencies of weak magnitude (ν < 2 THz) appear in the
results. Fu et al also obtained imaginary frequencies in the
same approximation [16].

3.2. Clamped boundary conditions

With clamped boundary conditions, the atoms at the Si/SiO2

interface are fixed to their equilibrium positions. This is
achieved by setting to zero appropriate elements of the
dynamical matrix. Relaxation of the surface atoms is
then meaningless and in this case there are no imaginary
frequencies.

It must be noted from figure 11 that the global shape of the
nanocrystal DOS is close to the bulk DOS, except in the 10–
11 THz frequency range where an additional peak is observed.
The projection of the nanocrystal modes in figure 12 confirms
the existence of this specific frequency range.

Again, the Brillouin zone localization in the [1, 0, 0]
direction (figure 7) shows that the nanocrystal modes are
mostly related to bulk zone centre modes.

Then, forgetting the specific modes, we can still consider
this result as a good indication that the model is correct. For
these modes, it appears that the vibration amplitude exhibits a
succession of nodes and antinodes as a function of their radial
position (figure 13).

The specific modes in silicon nanocrystal pointed out
in this paper, using the two types of boundary conditions,
did not appear in earlier calculations, probably due to the
use of supercell geometry [19, 20] and periodic boundary
conditions [21].

3.3. Comparison with experiments

Raman spectra have been measured for nanocrystals of various
sizes [14, 17]. It appears that for nanocrystals of radius
greater than 10 nm the bulk spectrum is recovered, while for
small nanocrystals we have two peaks, one at high frequency
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 (
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S
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A
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Figure 10. (a) DOS calculated for the atoms at the centre of the nanocrystal. (b) DOS calculated for the atoms at the edge of the nanocrystal.
The radius is 2.5 nm; bulk DOS is represented in dashed lines, free boundary conditions are considered.
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Figure 11. DOS calculated by considering clamped boundary conditions for nanocrystals of radius: (a) 0.6 nm; (b) 2.5 nm; the bulk DOS is
represented by dashed lines.

Figure 12. Total coherence term considering clamped boundary conditions for a 2.5 nm-radius nanocrystal (lines, bulk dispersion relation):
(a) 3D plot in the [1, 0, 0] direction; (b) contour plot.
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Figure 13. Amplitude of vibration of atoms of a nanocrystal
(R = 1.35 nm) as a function of their radial position considering
clamped boundary conditions (the mode frequency is ν = 10.5 THz).

approaching the main bulk peak [14], the other at very low
frequency tending to zero [17] with increasing dot size.

Raman spectra can also be calculated from the phonon
wavevectors and phonon frequencies. We have adapted
Richter’s theory [5, 6, 15, 33, 36, 50] and used our projection
coefficient C(�q, ωB, ωNC) to reconstruct a Raman spectrum in

Figure 14. Calculated Raman spectra for nanocrystals of various
sizes and for bulk silicon.

the form

I (ω) ∝
∑

ωB,ωNC

|C(�0, ωB, ωNC)|2
[ω − ωNC]2 − (�0/2)2

where �0 is the natural line shape (taken as �0 = 3 cm−1 [15]).
The spectra obtained for nanocrystals of various sizes at

high frequencies are displayed in figure 14. The shift of the
main peak is clearly shown. This frequency shift is compared

6
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Figure 15. Calculated (broken lines) and experimental Raman shifts
at high frequencies.

to experimental data in figure 15. A good agreement is found,
which completes the validation of our model. Both boundary
conditions give results within the range of experimental results,
the spread of which is larger than the difference between the
two curves.

4. Conclusion

Using the adiabatic bond charge model and introducing an
effective Madelung constant, we have calculated the phonon
dispersion of silicon nanocrystals. The boundary conditions
are chosen to be either free or clamped.

In the case of free-standing boundary conditions the
results are coherent with the bulk case, except for a frequency
range which has been demonstrated to correspond to surface
vibrations. In the case of clamped boundary conditions the
DOS is still close to the bulk one but another specific low
frequency range appears with mode amplitudes characterized
by nodes and antinodes as a function of the radial distance.
Comparison with experimental Raman spectra gives very good
results.

These results open up the possibility of an accurate study
of electron–phonon coupling and the computation of scattering
rates in nanocrystals.
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